Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Temperature and carrier density dependence of Auger recombination in a 3.4 μm InAs/GaSb/AlSb type-II laser device

Identifieur interne : 00E890 ( Main/Repository ); précédent : 00E889; suivant : 00E891

Temperature and carrier density dependence of Auger recombination in a 3.4 μm InAs/GaSb/AlSb type-II laser device

Auteurs : RBID : Pascal:02-0573589

Descripteurs français

English descriptors

Abstract

We report on the temperature and carrier density dependence of non-radiative recombination processes in an InAs/GaSb/InAs type-II W-laser emitting at 3.4 μm. The measurements were performed with a sub-picosecond photoluminescence upconversion set-up in a temperature range between 10 K and 300 K and with initial excited carrier densities in the range between 2.96 x 1018 cm-3 and 4.44 × 1019 cm-3. The excellent growth quality of the device is indicated by a Shockley-Read-Hall coefficient of 2.2 x 108 s-1 at 10 K and 1.1 x 108 s-1 at 300 K. The cubic Auger recombination (AR) coefficient decreases in a characteristic manner with increasing initial excited carrier density. From a convergence equation, we obtained a cubic AR coefficient C03 of 1.2 × 10-28 cm6 s-1 for low carrier densities at 200 K. For low temperatures, due to degenerate carrier population of valence and conduction bands, a sublinear increase of the reciprocal lifetime versus carrier density is measured. With rising temperature the sublinear increase becomes linear and at 300 K a quadratic AR coefficient C02 of 1.73 x 10-11 cm3 s-1 was determined.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0573589

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Temperature and carrier density dependence of Auger recombination in a 3.4 μm InAs/GaSb/AlSb type-II laser device</title>
<author>
<name sortKey="Drumm, J O" uniqKey="Drumm J">J. O. Drumm</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Vogelgesang, B" uniqKey="Vogelgesang B">B. Vogelgesang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, G" uniqKey="Hoffmann G">G. Hoffmann</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schwender, C" uniqKey="Schwender C">C. Schwender</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Herhammer, N" uniqKey="Herhammer N">N. Herhammer</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fouckhardt, H" uniqKey="Fouckhardt H">H. Fouckhardt</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="2">Rhénanie-Palatinat</region>
<settlement type="city">Kaiserslautern</settlement>
</placeName>
<orgName type="university">Université de technologie de Kaiserslautern</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0573589</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0573589 INIST</idno>
<idno type="RBID">Pascal:02-0573589</idno>
<idno type="wicri:Area/Main/Corpus">00E352</idno>
<idno type="wicri:Area/Main/Repository">00E890</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium antimonides</term>
<term>Auger recombination</term>
<term>Binary compounds</term>
<term>Carrier density</term>
<term>Carrier lifetime</term>
<term>Charge carriers</term>
<term>Conduction bands</term>
<term>Cubic lattices</term>
<term>Frequency conversion</term>
<term>Gallium antimonides</term>
<term>Hall effect</term>
<term>Indium arsenides</term>
<term>Laser radiation</term>
<term>Non radiative recombination</term>
<term>Photoluminescence</term>
<term>Semiconductor materials</term>
<term>Temperature dependence</term>
<term>Valence bands</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Densité porteur charge</term>
<term>Recombinaison Auger</term>
<term>Rayonnement laser</term>
<term>Recombinaison non radiative</term>
<term>Photoluminescence</term>
<term>Conversion fréquence</term>
<term>Dépendance température</term>
<term>Effet Hall</term>
<term>Porteur charge</term>
<term>Bande valence</term>
<term>Bande conduction</term>
<term>Durée vie porteur charge</term>
<term>Indium arséniure</term>
<term>Semiconducteur</term>
<term>Gallium antimoniure</term>
<term>Aluminium antimoniure</term>
<term>Réseau cubique</term>
<term>Composé binaire</term>
<term>As In</term>
<term>InAs</term>
<term>Ga Sb</term>
<term>GaSb</term>
<term>7350G</term>
<term>7855</term>
<term>Al Sb</term>
<term>AlSb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the temperature and carrier density dependence of non-radiative recombination processes in an InAs/GaSb/InAs type-II W-laser emitting at 3.4 μm. The measurements were performed with a sub-picosecond photoluminescence upconversion set-up in a temperature range between 10 K and 300 K and with initial excited carrier densities in the range between 2.96 x 10
<sup>18</sup>
cm
<sup>-3</sup>
and 4.44 × 10
<sup>19</sup>
cm
<sup>-3</sup>
. The excellent growth quality of the device is indicated by a Shockley-Read-Hall coefficient of 2.2 x 10
<sup>8</sup>
s
<sup>-1</sup>
at 10 K and 1.1 x 10
<sup>8</sup>
s
<sup>-1</sup>
at 300 K. The cubic Auger recombination (AR) coefficient decreases in a characteristic manner with increasing initial excited carrier density. From a convergence equation, we obtained a cubic AR coefficient C
<sup>0</sup>
<sub>3</sub>
of 1.2 × 10
<sup>-28</sup>
cm
<sup>6</sup>
s
<sup>-1</sup>
for low carrier densities at 200 K. For low temperatures, due to degenerate carrier population of valence and conduction bands, a sublinear increase of the reciprocal lifetime versus carrier density is measured. With rising temperature the sublinear increase becomes linear and at 300 K a quadratic AR coefficient C
<sup>0</sup>
<sub>2</sub>
of 1.73 x 10
<sup>-11</sup>
cm
<sup>3</sup>
s
<sup>-1</sup>
was determined.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>17</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Temperature and carrier density dependence of Auger recombination in a 3.4 μm InAs/GaSb/AlSb type-II laser device</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DRUMM (J. O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VOGELGESANG (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HOFFMANN (G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHWENDER (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HERHAMMER (N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FOUCKHARDT (H.)</s1>
</fA11>
<fA14 i1="01">
<s1>Research Group ' Integrierte Optoelektronik und Mikrooptik', Department of Physics, University of Kaiserslautern, Erwin-Schrödinger-Strasse</s1>
<s2>67663 Kaiserslautern</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1115-1122</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000102152760190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0573589</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the temperature and carrier density dependence of non-radiative recombination processes in an InAs/GaSb/InAs type-II W-laser emitting at 3.4 μm. The measurements were performed with a sub-picosecond photoluminescence upconversion set-up in a temperature range between 10 K and 300 K and with initial excited carrier densities in the range between 2.96 x 10
<sup>18</sup>
cm
<sup>-3</sup>
and 4.44 × 10
<sup>19</sup>
cm
<sup>-3</sup>
. The excellent growth quality of the device is indicated by a Shockley-Read-Hall coefficient of 2.2 x 10
<sup>8</sup>
s
<sup>-1</sup>
at 10 K and 1.1 x 10
<sup>8</sup>
s
<sup>-1</sup>
at 300 K. The cubic Auger recombination (AR) coefficient decreases in a characteristic manner with increasing initial excited carrier density. From a convergence equation, we obtained a cubic AR coefficient C
<sup>0</sup>
<sub>3</sub>
of 1.2 × 10
<sup>-28</sup>
cm
<sup>6</sup>
s
<sup>-1</sup>
for low carrier densities at 200 K. For low temperatures, due to degenerate carrier population of valence and conduction bands, a sublinear increase of the reciprocal lifetime versus carrier density is measured. With rising temperature the sublinear increase becomes linear and at 300 K a quadratic AR coefficient C
<sup>0</sup>
<sub>2</sub>
of 1.73 x 10
<sup>-11</sup>
cm
<sup>3</sup>
s
<sup>-1</sup>
was determined.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C50G</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recombinaison Auger</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Auger recombination</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recombinación Auger</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Rayonnement laser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Laser radiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Conversion fréquence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Frequency conversion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Conversión frecuencia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet Hall</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Hall effect</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Porteur charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Charge carriers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande valence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Valence bands</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande conduction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Conduction bands</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Durée vie porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier lifetime</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium antimoniure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium antimonides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Aluminium antimoniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Aluminium antimonides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ga Sb</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>GaSb</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>7350G</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>7855</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Al Sb</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>AlSb</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>336</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00E890 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00E890 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0573589
   |texte=   Temperature and carrier density dependence of Auger recombination in a 3.4 μm InAs/GaSb/AlSb type-II laser device
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024